

Typical Features

- ◆ Wide input voltage range (4:1), output power 12W
- ◆ Efficiency up to 88% (Typ.)
- ◆ Standby power consumption 0.7W (Typ.)
- ◆ Input under voltage protection, output over voltage & over current protections
- ◆ Continuous short circuit protection, Self-recovery
- ◆ Isolation voltage 5000VDC
- ◆ Operating temperature from -40°C to +105°C
- ◆ Encapsulated CR & CL distances 5.1mm
- ◆ Good EMC performance
- ◆ Standard pin-out alignment

Application Field

PFD12-XXSXXB2(C)5 series ---- DIP mounting standard 2"X1" package DC-DC modular converters with wide input voltage range 4:1, low standby power consumption, isolated & regulated single output 12W. This series of products can be widely used in the fields of Industrial control, Instrument, Communication, Electricity power and IoT, etc. Additional circuit diagram for EMC is recommended for the application with high EMC requirement.

Typical Product List

Certificate	Part No.	Input Voltage		Output Voltage/Current (Vo/Io)		Input Current @Nominal volt. (mA) Typ.		Max Capacitive load (uF)	Efficiency @Full load, Nominal volt.	
		Nominal (VDC)	Range (VDC)	Vo (VDC)	Io (mA)	Full load	No load		Min (%)	Typ (%)
-	*PFD12-18S3V3B2(C)5	24	9-36	3.3	2400/0	388	30	8000	83	85
-	PFD12-18S05B2(C)5			5	2400/0	561	20	5000	85	87
-	*PFD12-18S09B2(C)5			9	1333/0	581	30	2000	84	86
-	PFD12-18S12B2(C)5			12	1000/0	568	2	1000	86	88
-	PFD12-18S15B2(C)5			15	800/0	568	10	800	86	88
-	PFD12-18S24B2(C)5			24	500/0	575	2	500	85	87
-	*PFD12-36S3V3B2(C)5	48	18-75	3.3	2400/0	194	30	8000	83	85
-	PFD12-36S05B2(C)5			5	2400/0	291	20	5000	85	87
-	*PFD12-36S09B2(C)5			9	1333/0	291	30	2000	84	86
-	PFD12-36S12B2(C)5			12	1000/0	284	2	1000	86	88
-	*PFD12-36S15B2(C)5			15	800/0	284	2	800	86	88
-	*PFD12-36S24B2(C)5			24	500/0	287	2	500	85	87

Note 1: The * marked parts have been developed in process.

Note 2: The part number letter R indicates the part with both ON/OFF Control & Trim functions, C indicates the part with Control function, T indicates with Trim function, N indicates with None of Control or Trim.

Note 3: The typical value of efficiency is tested at nominal input voltage and rated load.

Note 4: The maximum capacitive load is the capacitance allowed to be used when the power supply starts at full load. The converter may not start if the capacitor exceeds this value.

Note 5: The chip could operate at jitter frequency situation with no load or light load to decrease the no-load power consumption, so no load is not available. $\geq 10\%$ load or a high-frequency low resistance E-cap($\geq 330\mu F$) load is recommended, to avoid the output ripple increasing.

Note 6: Please contact Aipu sales for other output voltages requirements of this series but not listed in this table.

Input Specifications

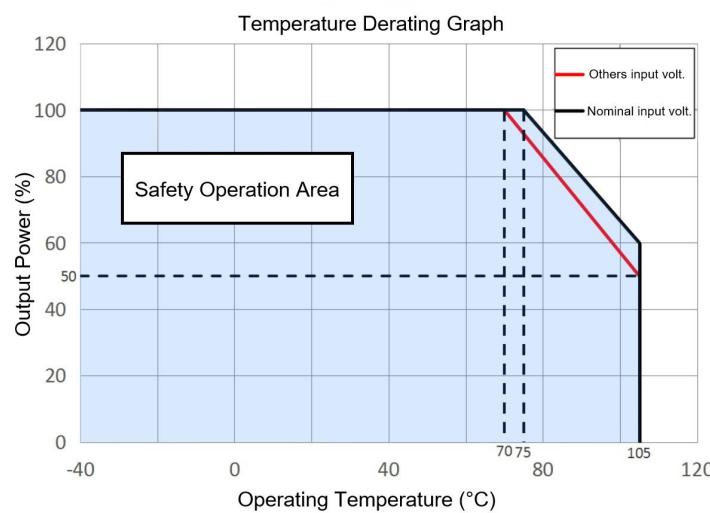
Items	Test Conditions	Min	Typ.	Max	Unit
Standby power consumption	Full input voltage range	/	0.7	/	W
Input current Max	Full input voltage range	/	/	1.6	A
Start-up voltage	24V nominal input series	/	8	9	VDC
	48V nominal input series	/	15	18	VDC
Input under voltage protection	24V nominal input series	/	7	/	VDC
	48V nominal input series	/	14	/	VDC
Input inrush voltage (1sec.max)	24V nominal input series	-0.7	/	50	VDC
	48V nominal input series	-0.7	/	100	VDC
Input filter	/	Pi type filter			
Hot-plug	/	NA			
ON/OFF control (*Ctrl)	Turn ON the converter	No connection or connected to high level (2.5V-12VDC)			
	Turn OFF the converter	Connected to -Vin or the low voltage level (0-1.2VDC)			
	Input current for switching off	/	5	/	mA

*Note: The Ctrl voltage is relative to the input -Vin.

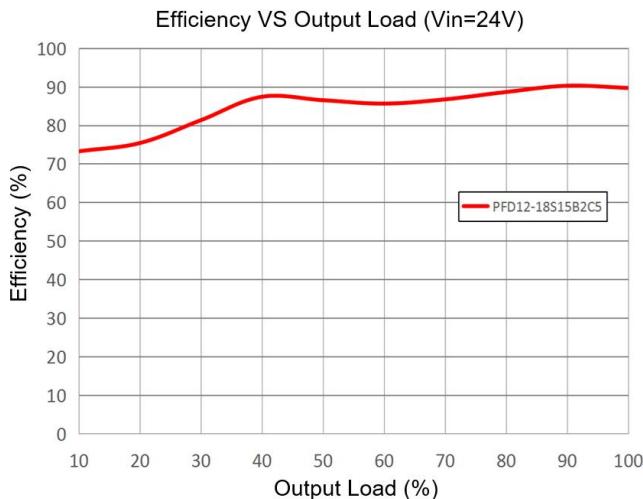
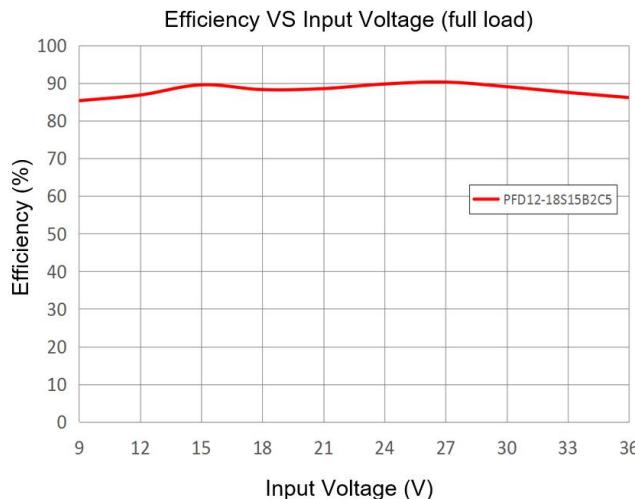
Output Specifications

Items	Test Conditions		Min	Typ.	Max	Unit
Output voltage accuracy	Full input voltage range		/	± 1	± 2	%
Line regulation	Full input voltage range, rated load		/	± 0.2	± 0.5	%
Load regulation	Nominal input voltage, 10%-100% load		/	± 0.5	± 1	%
Ripple & noise	10%-100% load, 20MHz bandwidth		/	50	100	mVp-p
Dynamic response time	25% rated load step, full input voltage range		/	300	500	uS
Dynamic response deviation	25% rated load step, nominal input voltage	3.3V&5V output	/	± 3	± 8	%
		Others	/	± 3	± 5	%
Temperature drift coefficient	Full load		/	/	± 0.03	$^{\circ}\text{C}$
Turn on delay time	Nominal input voltage		/	30	/	μs
Output voltage Trim	Full input voltage range		90	/	110	$\% \text{Vo}$
Output overshoot			/	/	10	$\% \text{Vo}$
Over voltage protection			110	140	200	$\% \text{Vo}$
Over current protection			110	140	220	$\% \text{Io}$
Short Circuit Protection			Continuous, self-recovery			

Note: Ripple & Noise $\leq 5\% \text{Vo}$ at 0% - 10% load, it is tested by the Parallel-line method (refer to the following test instruction).

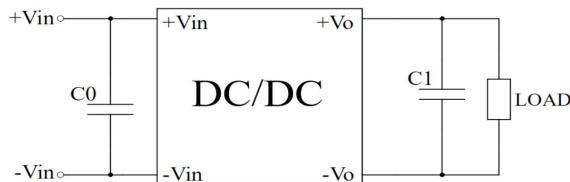

General Specifications

Items	Test Conditions	Min	Typ.	Max	Unit
Switching frequency	Operating Mode (PWM)	/	250	/	KHz
Operating temperature	Refer to the Temperature Derating Graph	-40	/	+105	°C
Storage temperature		-55	/	+125	
Case temperature	Within the operating derating range	/	/	+105	
Pin soldering temperature	1.5mm from the case, soldering time 10S	/	/	280	
Relative humidity	No condensing	5	/	95	%RH
Isolation voltage	I/P – O/P, test 1min, leakage current <1mA	5000	/	/	VDC
Isolation capacitance	I/P – O/P, 100KHz/0.1V	/	1000	/	pF
Insulation resistance	I/P – O/P, @ 500VDC	100	/	/	MΩ
MTBF	MIL-HDBK-217F@25°C	1000	/	/	K hours
Cooling method	Nature air				
Vibration	10-1000Hz, 10G, 1mm, along X, Y and Z, 2h				
Case material	Plastic in black, flame class UL94-V0				
Weight/Dimensions	Part No.	Weight (Typ)	Dimensions L x W x H		
	PFD12-XXSXXB2(C)5	26g	50.8 X 25.4 X 15.6 mm	2.000 X 1.000 X 0.614 inch	

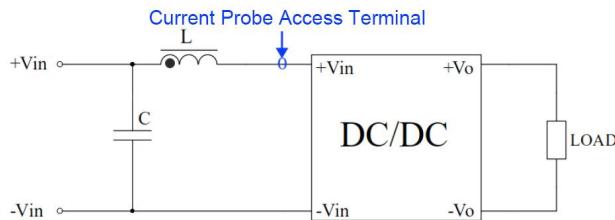


EMC Performance

Item		Test Standard		Performance/Class	
EMC	EMI	CE	CISPR32/EN55032	CLASS B	(with the Recommended EMC Circuit)
		RE	CISPR32/EN55032	CLASS B	(with the Recommended EMC Circuit)
	EMS	RS	IEC/EN61000-4-3	10V/m	Perf. Criteria B (with the Recommended EMC Circuit)
		CS	IEC/EN61000-4-6	3V r.m.s	Perf. Criteria B (with the Recommended EMC Circuit)
		ESD	IEC/EN61000-4-2	Contact $\pm 4\text{KV}$	Perf. Criteria B
		Surge	IEC/EN61000-4-5	$\pm 2\text{KV}$	Perf. Criteria B (with the Recommended EMC Circuit)
		EFT	IEC/EN61000-4-4	$\pm 2\text{KV}$	Perf. Criteria B (with the Recommended EMC Circuit)

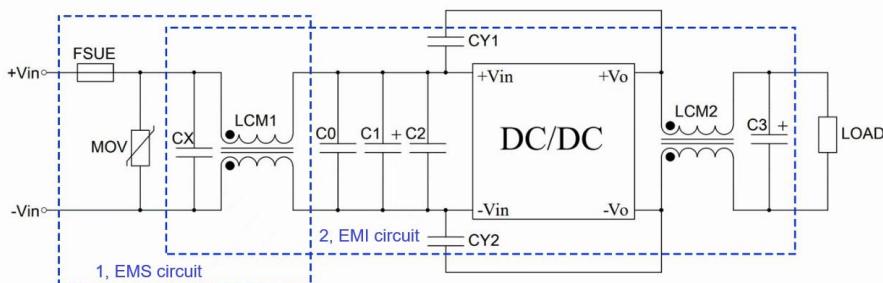
Temperature Derating Graph



Efficiency Graphs

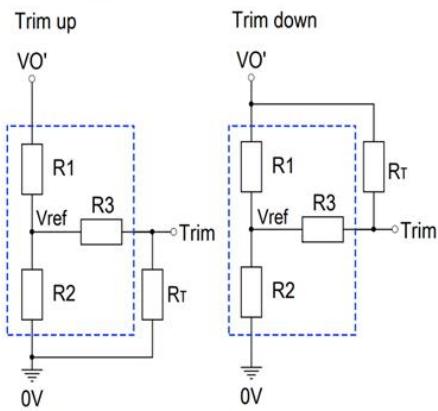

Recommended Circuits for Application

1, All this series of converters will be tested according to this circuit diagram below before shipping. To increase the capacitance of C1 can decrease the output ripple, but the output capacitance must be less than the Max capacitance load defined.


Component	Parameter
C0	47-100uF/100V
C1	100uF/50V

2, Input reflected ripple current test circuit diagram

Component	Parameter
C	220uF/100V
L	4.7uH/15A


3, Recommended EMC circuit diagram

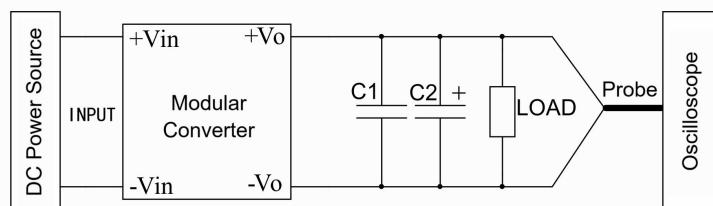
Component	Vin=24V	Vin=48V
FUSE	TBD by the customer	
MOV	14D560K	14D101K
CX	0.47uF	0.47uF
LCM1	10mH	10mH
C0, C2	1uF/100V	1uF/100V
C1	220uF/100V	220uF/100V
LCM2	30uH	30uH
C3	47uF/ 50V	47uF/ 50V
CY1, CY2	1nF/2000V	1nF/2000V

Note: Part 1 circuit is for EMS, part 2 for EMI filtering, both can be adjusted according to the actual situation.

4. Output voltage Trim and Calculation of Trim Resistance

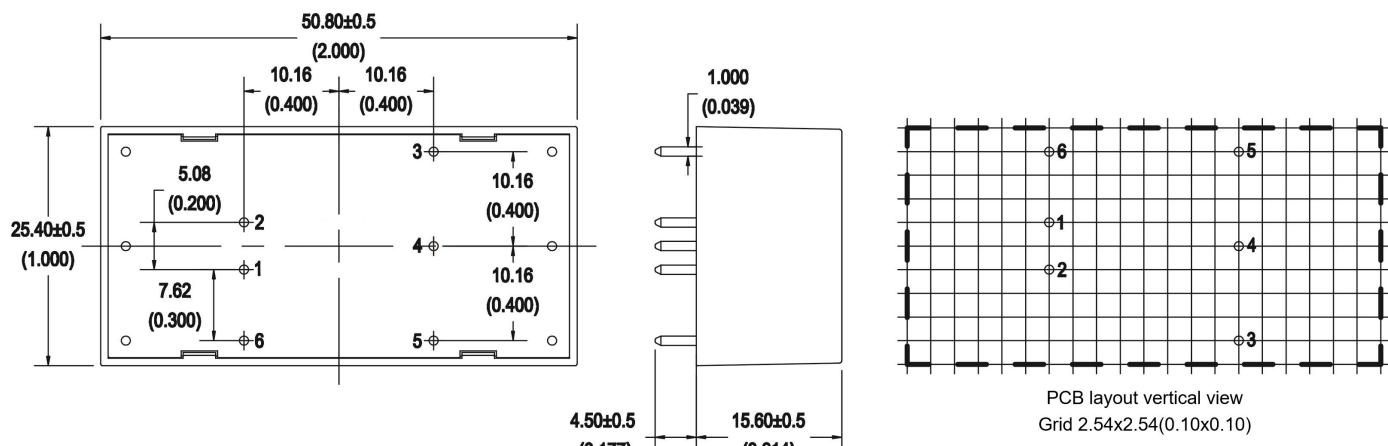
Trim Resistance calculating formula

$$\text{up: } R_T = \frac{\alpha R_2}{R_2 - \alpha} - R_3 \quad \alpha = \frac{V_{ref}}{V_{o'} - V_{ref}} \cdot R_1$$


$$\text{down: } R_T = \frac{\alpha R_1}{R_1 - \alpha} - R_3 \quad \alpha = \frac{V_{o'} - V_{ref}}{V_{ref}} \cdot R_2$$

R_T is the Trim resistance
 α is a self-defined parameter
 $V_{o'}$ is the required Up-voltage or Down-voltage

Output voltage	Trim internal circuit parameters			
	$R_1(K\Omega)$	$R_2(K\Omega)$	$R_3(K\Omega)$	$V_{ref}(V)$
3.3	24	14.53	68	1.25
5	18	18	68	2.5
9	25.5	9.79	30	2.5
12	18	4.7	30	2.5
15	25.5	5.1	30	2.5
24	25.5	2.95	18	2.5


Note: Trim up & down circuits, the components in the dotted area are inside of the converter.

Ripple & Noise Test Instruction (Parallel-line Method, 20MHz Bandwidth)

1. The Ripple & Noise test needs the cables in parallel, an oscilloscope that should be set at the Sample Mode, bandwidth 20MHz. 100M bandwidth probe with cap and ground removed. One polypropylene capacitor C1(0.1uF) and one high-frequency low-resistance electrolytic capacitor C2(10uF) are connected in parallel with the probe.
2. Refer to the test diagram, the converter output connects to the electronic load by the jig with cables which size should be defined according to the output current value. The test can start at the converter output terminals after the input power on.
3. It is recommended to use a $\geq 10\%$ load or a high-frequency low resistance electrolytic capacitor ($\geq 470\mu F$) load at the output to avoid the output ripple increasing.

Mechanical Dimensions

Unit: mm(inch)
Pin diameter tolerance: $\pm 0.10 (\pm 0.004)$
General tolerance: $\pm 0.25 (\pm 0.010)$

Pin-out Function Description

Pin No.	1	2	3	4	5	6
PFD12-XXSXXB2C5	-Vin	+Vin	+Vo	No Pin	GND	Ctrl
PFD12-XXSXXB2R5	-Vin	+Vin	+Vo	Trim	GND	Ctrl
PFD12-XXSXXB2T5	-Vin	+Vin	+Vo	Trim	GND	No Pin
PFD12-XXSXXB2N5	-Vin	+Vin	+Vo	No Pin	GND	No Pin

Application Notice

1. The product should be used according to the specifications, otherwise it could be permanently damaged.
2. The product performance cannot be guaranteed if it works at a lower load than the minimum load defined.
3. The product performance cannot be guaranteed if it works under over-load condition.
4. Unless otherwise specified, all values or indicators on this datasheet are tested at $T_a=25^\circ\text{C}$, humidity<75%RH, nominal input voltage and rated load (pure resistance load).
5. All values or indicators on this datasheet have been tested based on Aipupower test specifications.
6. The specifications are specially for the parts listed on this datasheet, any other non-standard model performances could be out of the specifications. Please contact our technician for specific requirements.
7. Aipupower can provide customization service.

Guangzhou Aipu Electron Technology Co., Ltd

Address: Building 4, HEDY Park, No.63, Punan Road, Huangpu Dist, Guangzhou, China.

Tel: 86-20-84206763 Fax: 86-20-84206762 HOTLINE: 400-889-8821

E-mail: sales@aipu-elec.com Website: <https://www.aipupower.com>